

Class 11 Mathematics – Chapter: Conic Sections

1. Introduction

- Conic sections are curves obtained by intersecting a plane with a double-napped cone.
- They include circles, ellipses, parabolas, and hyperbolas.

2. Types of Conic Sections

a) Circle

- Set of all points equidistant from a fixed point (center).

- Equation (center at origin):

$$x^2 + y^2 = r^2 \quad x^2 + y^2 = r^2$$

b) Ellipse

- Set of points where the sum of distances from two fixed points (foci) is constant.

- Standard equation (center at origin):

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad a^2 > b^2$$

- $a > b$ or $b > a$ determines orientation.

c) Parabola

-

Set of points equidistant from a fixed point (focus) and a fixed line (directrix).

- Standard equation (vertex at origin):

$$y^2 = 4ax \text{ or } x^2 = 4ay$$

d) Hyperbola

- Set of points where the absolute difference of distances from two fixed points (foci) is constant.
- Standard equation (center at origin):

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

3. Important Terms

-

Focus (Foci)

- Focus (Foci)
- Directrix
- Vertex
- Eccentricity (e): Ratio of distance from focus to directrix; defines shape.

4. Eccentricity Values

- Circle: $e=0$
- Ellipse: $0 < e < 1$

- Parabola: $e=1$
- Hyperbola: $e>1$

5. Applications

- Satellite dishes (parabolas)
- Planetary orbits (ellipses)
- Engineering and physics

6. Exam Tips

- Memorize standard equations.
- Understand derivations of equations from definitions.
- Practice plotting graphs.
- Solve problems involving distances and eccentricity.